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ROTATION OF THE HORIZONTAL VELOCITY VECTOR
IN THE ATMOSPHERIC TIDES

J. E. Blamont and H. Teitelbaum1

ABSTRACT. We have studied the direction of rotation of the
horizontal velocity vector in the atmosphere tides above

80 km. We show that there is no characteristic rotational
direction associated with each hemisphere but that there is
for each tidal mode, zones of latitude within which one can
unambiguously define the rotational direction. This result,
which comes from treatment of the tidal equations (without
any hypotheses concerning the solution of the radial
equation) is valid from ground level in the case of time
related rotation.

Introduction

We acknowledge, generally, that the horizontal velocity vector for the
different atmospheric tidal modes turns in the direction.of the hands of a watch
(clockwise direction) in the Northern Hemisphere and in an opposite direction in
the Southern Hemisphere, and that it rotates as a function of time about a fixed
point in space or rotates as a function of altitude at a given instant. In this
latter case it is necessary that in the zone considered the vertical flow of

enérgy should be positive.

In the study of the rotation of the velocity vector, as in all those domains
which have a connection with tidal theory, it is necessary.to distinguish two
problems: the variation of parameters in relation to the latitude and their
variation in relation to altitude. The first pfoblem can be treated in the same
manner for all the systems similar to that of a plahet which turns within an
atmosphere, without taking into account the thermal,structure of the latter. For

the second problem it is necessary to take into account not only the thermal
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structure of the atmosphere, but also the form of the excitation functions which

in the case of thermal force (energy) is not yet completely known.

This is why we have made the analysis without making any hypothesis about
the form of the radial function. In particular, we are going to show that os-
cillation modes exist for which the rotation is produced opposite to the direction
usually acknowledged in some zones of latitude and which we will call reverse

rotation zones.

1. Spatial Rotation /2

Although the tidal equations are very well understood, we are going to

write those which we need in order to avoid all notation ambiguities.

If we reduce to a single oscillation mode the horizontal components of

velocity, they can be written in the following manner [Siebert, 1961]:
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where
@w = angular velocity of rotation in relation to the fixed sphere; :
¢ = earth's radius;
¢ = angular frequency of oscillation;
f = o/2u;
y = adiabatic constant;
hn = equivalent height of oscillation;
g = acceleration of gravity;
§ = colatitude (0 at the North Pole);
o = longitude;



s = whole number which indicates the periodicity in relation to @;
A = whole number bound to ¢ by the following equality, )\ = oT/2m,

where T equals the duration of a mean solar or lunar

x = reduced height defined by
V4
»
x= [ %

where H(E)
. o

z = altitude above sea level;

£ = integration parameter;

H = scale height (reference height).

(3)

Velocities u and v, are defined positively towards the south and east,

.

respectively;
®5 \,n is the Hough function;

y_(x) is the radial equation solution.
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and Jn(x) is the component variation, as a function of time, of the quantity of

heat per unit mass producing the oscillation.

In the manner in which the

equations at (1) and (2) have been written, yn(x) is a complex function of the

real variable. Since we are only considering one mode, n, we omit the suffix

n and write:

Y = yr(x) + i p(x)
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If we make:
Yx (X)
= {,

y(x) = arc tg Yo ()

then the equations at (1) and (2) can be written,
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v = — Aexiz | Y(x)| v(0) sin [of + sp 4 (x)] (9)
u = Aexz | Y(x)| .u(O) cos [at + s + y(x)]
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We -will call g the angle the horizontal velocity makes with the north-south

axis: . ) '
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The direction of rotation in relation to the altitude is given by the sign

of the expression:
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that is to say by the signs of £(9) and
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We acknowledge that it is a question of a region where the heat producing
the tides is negligible. In this case the equation at (4) becomes homogeneous.
Of course, this equation is homogeneous for the gravitational tides everywhere

and we can write:
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where

Using the equations at (5), (6), (7), (18) and (19), expression (17) can be

written:
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(Im = imaginary part, and * complex conjugation)

(20)

The first term in (20) is positive, unless we assume a very large negative

drop in temperature.
The second term is also positive when the energy is propagated upwards.

It is necessary to add that the complete expression of the vertical energy

flux [Wilkes, 1949] is:
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For equivalent negative heights we find that in the diurnal tide [Lindzen,
1966; Kato, 1967), the second term in (20) should be negative so that we can

have a positive energy flux.
It is easy to see that, in this case, expression (17) is also positive.

We arrive at the conclusion that the direction of rotation of the velocity

vector depends solely on the sign of £(g).

The equation at (16) shows that when f(g) > 0, the rotation is in a clock-
wise direction (Northern Hemisphere), but in the reverse .direction when f(g) <« 03

that is, in the 1atitﬁdes where expressions (12) and (13) have the opposite sign.

If f(g) is zero or infinity, that is v(g) = O or u(g) = O, then expression
(16) is cancelled from that which was expected from (9) and (10). This states
that for corresponding latitudes the oscillation is polarized in a plane either
N-8 or E-W. In other words, some reverse rotation zones are always bounded by

latitudes where the oscillation is polarized linearly.

The computation of (12) and (13) shows that several modes exist for which
f(g) < 0, for certain zones of latitude. We see this from the examples in

Figures 1, 2, 3 and L.

. 2 .
For the semidiurnal tide, we see that the mode 52 L has a reverse rotation
2 ° .
zone between 23° and 30° of latitude. 52 6 and 52 8 also have reverse rotation

zones, but they are shorter. In the terdiurnal tide, the phenomenon is most
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Figure 1. Figure 2.
Variation in latitude of v and u for Variation in latitude of v and u for
the second mode of the semidiurnal the second mode of the terdiurnal
symmetrical tide. symmetrical tide.
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Figure 3. Figure 4.
Variation in latitude of v and u for Variation in latitude of v and u for
the third mode of the terdiurnal the second mode of the quartdiurnal
symmetrical tide. symmetrical tide.



noteworthy. For 53' the reverse rotation zone is situated between 22° and 34°

3.5 3
of latitude. For 53.7,

and 23°, and the second between 42° and 48°. 1In general, the number of reverse

there are already two zones; the first between 14°

rotation zones grows proportionately as we increase the distance from the first

mode, but at the same time their extent in latitude becomes narrower.

For the symmetrical tides, the first mode does not have reverse rotation
zones; on the other hand, for unsymmetrical tides, there are always some re@erse
rotation zones. It is necessary to state also that, for the unsymmetrical tides
and for all the modes, there is always one reverse rotation zone near the equator.

In thé table are the reverse rotation zones of principal modes.

TABLE

Reverse Rotation Zones

)E.atitudes
CEN 24020300
0, 150sa190 390t 420
3 210 0340
3, 140¢. 230 4200 480
o 1802320
‘e 130220 - 380ce 460
0%, 179<,310
Ol - 110w210 . 359t 450
Ol, 1500290
IO 1102200 330 420
0%, C 00w200
O3, 0°wi20 330v0 370,
] é?;,( . 00w 220 !
03¢ Oo=el30 | .. 330cc42°
is 00w 210 ’
e oocei3e 300 w0400




2. Rotation in Time

Analysis of the rotation of the velocity vector about a fixed point in space
shows that it is defined with no more certainty than for the spatial rotation,
since it depends solely on the sign of f(§), as described previously, and is in-

dependent of the direction of the energy flux.
Beginning with (9) and (10), we can write:

u> yi

weoov (22)
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where az = Azex | Y(x)|* [u(®]2 (23)
b2 = Azex | Y(x)|2 [»(®]2 (24)
or else as a function of
Ve — azbhz
b2cosza - azsinZa (26)

which shows that at a fixed point of space, the velocity vector describes an
ellipse whose axes are oriented N-S, E-W and the relationship of the axes is
given by |f(g){: the direction is described by the sign of £(g) as for the
'preceding case. If we find a diurnal tide which describes an ellipse with the
axes not oriented in the N-S, E-W directions, it is a question of mixing no

more than one mode.

Conclusion

The detailed study of the direction of rotation of the horizontal velocity
vector in the atmospheric tides shows that there is not a characteristic direction
of rotation for each hemisphere, but that there are for each mode some zones of

latitude where we can define, without ambiguity, the direction of rotation.

We have remarked [Bedinger, Knaflich, Manring, Layzer, 1968], that hodographs
exist which turn in the reverse direction, but that, in this case, the modulus
of the velocity vector is, in general, smaller if we compare it to other hodo-

graphs where the direction of rotation is currently acknowledged.



This is explained if we look at the figures.

The variations in latitude of v(g) and u(g) correspond, generally, to a /5
divergence which increases from pole to equator. This divergencg is never too
large, so that we are able to find the maximum absolute value of v(g) and u(g)

in a reverse rotation zone.

It is, therefore, normal that in the case of reverse rotation of the

hodograph, we find some lower velocities.

Manuscript received April 15, 1968.
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